Advancement of Direct Catalytic Mannich-type Reactions with Esters or Ester-equivalents as Donors

Yong Guan Oct. 17, 2007 Michigan State University

Outline

- Background Information
- Esters or Ester-equivalents
 - Glycine Schiff-bases
 - β -Keto Esters or Malonates
 - Trichloromethylketones
 - N-acylpyrroles
 - N-Boc-anilides
 - Diazoacetates
- Conclusions

Background Information

Tollens and von Marle (1903)

Carl Mannich

Tollens, B.; Marle, v. Ber. 1903, 36, 1351. Mannich, C. J. Chem. Soc., Abstracts 1917, 112, 634. Mannich, C. Arch. Pharm. 1917, 255, 261. http://www.dphg.de/images/dphg_ap_mannich.gif

Reaction Mechanism

Step 1. Formation of the Schiff base

Step2. Amino alkylation of an acidic hydrogen containing compound

Acidic conditions

Name Reactions – A Collection of Detailed Reaction Mechanisms. Jie Jack Li. Springer-Verlag, Berlin. 2002.

Background Information

• Indirect-type Mannich Reaction

• Direct-type Mannich Reaction

Indirect-type Mannich Reaction

Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J. Am. Chem. Soc. 1998, 120, 4548.

Direct-type Mannich Reaction

(*R*)-ALB = AlLibis(binaphthoxide)

The First Direct Catalytic Asymmetric Mannich Reaction

Yamasaki, S.; Iida, T.; Shibasaki, M. Tetrahedron Lett. 1999, 41, 307.

General Difficulties

 Many Lewis acids are deactivated or sometimes decomposed by the nitrogen atoms of starting materials or products (trapped by the nitrogen atoms)

• Imine-chiral Lewis acid complexes are rather flexible and often have several stable conformers (including E/Z-isomers of imines). Multiple transition states would exist.

Kobayashi, S.; Ishitani, H. Chem. Rev. 1999, 99, 1069.

Background Information

Marques, M. M. B. *Angew. Chem., Int. Ed.* **2006**, *45*, 348. Shibasaki, M.; Matsunaga, S. *J. Organomet. Chem.* **2006**, *691*, 2089 Córdova, A. *Acc. Chem. Res.* **2004**, *37*, 102

Outline

- Background Information
- Esters or Ester-equivalents
 - Glycine Schiff-bases
 - β -Keto Esters or Malonates
 - Trichloromethylketones
 - N-acylpyrroles
 - N-Boc-anilides
 - Diazoacetates
- Conclusions

Outline

- Background Information
- Esters or Ester-equivalents
 - Glycine Schiff-bases
 - β -Keto Esters or Malonates
 - Trichloromethylketones
 - N-acylpyrroles
 - N-Boc-anilides
 - Diazoacetates
- Conclusions

Glycine Schiff-bases

Cu(I) Catalyst

Phase-Transfer Catalyst

Glycine Schiff-bases

Longmire, J. M.; Wang, B.; Zhang, X. *J. Am. Chem. Soc.* **2002**, *124*, 13400. Ooi, T.; Takeuchi, M.; Kamede, M.; Maruoka, K. *J. Am. Chem. Soc.* **2000**, *122*, 5228. Zhang, F.-Y.; Corey, E. J. *Org. Lett.* **2000**, *2*, 1097. Horikawa, M.; Busch-Petersen, J.; Corey, E. J. *Tetrahedron Lett.* **1999**, *40*, 3843.

Glycine Schiff-bases

Challenges

- (1) "Force" the Lewis acid stabilized imino glycine alkyl ester to act as a nucleophile rather than a 1,3-dipolar species
- (2) Develop a chiral catalyst that can catalyze both a diastereo- and enantioselective addition of imino glycine alkyl ester to imines.

Optimal condition Ligand -CuClO₄ (10 mol%), Et₃N (10 mol%), -20 °C, THF, 4 Å MS

Substrate Scope

R	yield (%)	syn/anti	ee (%)
Ph	94	79:21	97
4-MeO-C ₆ H ₄	90	82:18	97
2-Br-C ₆ H ₄	99	61:39	96
2-furyl	88	54:46	90
<i>i</i> Pr	73	>95:5	96
Су	85	>95:5	92
<i>n</i> Bu	61	>95:5	88

Coordination Modes

Ar = Ph $\Delta H_{\rm f}^{\Theta}$ = -11.1 kcal/mol

Ar = Ph ∆ *H*_f[⊕] = -10.9 kcal/mol 14% ee

 $\begin{array}{l} \mathsf{Ar} = \mathsf{2,4,6-Me}_3\mathsf{-C}_6\mathsf{H}_2 \\ \vartriangle \ \mathsf{H}_{\mathsf{f}}^\Theta = \mathsf{-26.8 \ kcal/mol} \end{array}$

Semiempirical PM3 calculation

Transition State

Approach of the imine (blue) to the *Si* face of the benzophenone imine glycine methyl ester anion

Phase-Transfer Catalyst

tartrate-derived diammonium salt (TaDiAS)

Crystal Structure (R = nPr)

Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M. Angew. Chem. Int. Ed. 2005, 44, 4564.

Substrate Scope

R	yield (%)	dr (s <i>yn/anti</i>)	ee (%)
Ph	98	99:1	70
4-MeO-C ₆ H ₄	95	95:5	82
4-Me-C ₆ H ₄	98	98:2	80
2-Me-C ₆ H ₄	99	97:3	68
$4-CI-C_6H_4$	87	98:2	58
2-thiophenyl	98	98:2	80
(E)-PhCH=CH ₂	86	98:2	66

Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M. Angew. Chem. Int. Ed. 2005, 44, 4564.

Kinetic Study

Initial rate kinetic studies:

1) First-order dependency for the glycine Schiff base and Cs_2CO_3

2) Zero-order dependency for the imine and the catalyst

• Conclusions:

- 1) The rate-determining step is deprotonation of the glycine Schiff base by Cs_2CO_3
- 2) The catalyst is not involved in this step

Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M. *Angew. Chem. Int. Ed.* **2005**, *44*, 4564.

Catalytic Cycle

Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M. Angew. Chem. Int. Ed. 2005, 44, 4564.

Control of Diastereoselectivity

The reaction may proceed via the nonchelate, acyclic transition-state model

Shibuguchi, T.; Mihara, H.; Kuramochi, A.; Ohshima, T.; Shibasaki, M. Chem. Asian J. 2007, 2, 794

Control of Enantioselectivity

- The benzyl moieties around one ammonium cation covers the *Si* face of the *Z* enolate of the glycine Schiff base
- The electrophiles approach from the less-hindered face (*Re* face) to afford the products with *S* configuration

Okada, A.; Shibuguchi, T.; Ohshima, T.; Masu, H.; Yamaguchi, K.; Shibasaki, M. *Angew. Chem. Int. Ed.* **2005**, *44*, 4564.

Shibuguchi, T.; Mihara, H.; Kuramochi, A.; Ohshima, T.; Shibasaki, M. Chem. Asian J. 2007, 2, 794

Improvement

R	yield (%)	dr (<i>syn/anti</i>)	ee (%)
Ph	66	99:1	79
4-MeO-C ₆ H ₄	96	99:1	90
4-Me-C ₆ H ₄	92	99:1	88
$4-CI-C_6H_4$	88	98:2	70
2-thiophenyl	89	98:2	83
<i>n</i> Pr	95	>20:1	71
(E)-PhCH=CH	89	>20:1	75

Shibuguchi, T.; Mihara, H.; Kuramochi, A.; Ohshima, T.; Shibasaki, M. Chem. Asian J. 2007, 2, 794

Outline

- Background Information
- Esters or Ester-equivalents
 - Glycine Schiff-bases
 - β -Keto Esters or Malonates
 - Trichloromethylketones
 - N-acylpyrroles
 - N-Boc-anilides
 - Diazoacetates
- Conclusions

β -Keto Esters or Malonates

- Cu(II) Catalysts
- Pd Catalysts
- Cinchona Alkaloid Catalysts

Cu(II) Catalysts

Marigo, M.; Kjærsgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A. Chem. Eur. J. 2003, 9, 2359.

Cu(II) Catalysts

Marigo, M.; Kjærsgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A. Chem. Eur. J. 2003, 9, 2359.

Transition States

Marigo, M.; Kjærsgaard, A.; Juhl, K.; Gathergood, N.; Jørgensen, K. A. Chem. Eur. J. 2003, 9, 2359.

Pd Catalysts

c: Ar = C_6H_5 : (*R*)-SEGPHOS d: Ar = 3,5-Me₂-C₆H₃: (*R*)-DM-SEGPHOS

Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem. Int. Ed. 2005, 44, 1525.

Pd Catalysts

Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem. Int. Ed. 2005, 44, 1525.

One-Pot Reactions

61% yield, dr = 70:30 96% ee (major), 96% ee (minor)

98% ee (major), 88% ee (minor)

Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem. Int. Ed. 2005, 44, 1525.

Transition-State Model

Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei, H.; Umebayashi, N.; Sodeoka, M. Angew. Chem. Int. Ed. 2005, 44, 1525.

Cinchona Alkaloid Catalysts

Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005, 127, 11256.

Cinchona Alkaloid Catalysts

Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005, 127, 11256.

Substrate Scope

Ar	yield (%)	ee (%)
Ph	79	92
$4-F-C_6H_4$	95	93
3-CH ₃ -C ₆ H ₄	78	96
3,4-(OCH ₂ O)C ₆ H ₃	77	80
2-furyl	78	93
2-thienyl	69	92
2-naphthyl	80	95

Lou, S.; Taoka, B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005, 127, 11256.

Transition-State Model

Cinchonine/methyl 2-oxocyclopentanecarboxylate enol tautomer complex (MMFF) approaching the *Re* face of methyl benzylidenecarbamate

Ting, A.; Lou, S.; Schaus, S. E. Org. Lett. 2006, 8, 2003.

Cinchona Alkaloid Derivatives

Thiourea moiety

-activate electrophiles -two coplanar protons for H-bond donation -rigid

Thiourea *N*-aryl group

-relatively unhindered -substitution variable

-CF₃ gruops serve as non Lewis basic EWG

McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed. 2005, 44, 6367.

Cinchona Alkaloid Derivatives

Song, J.; Wang, Y.; Deng, L. J. Am.Chem. Soc. 2006, 128, 6048.

Outline

- Background Information
- Esters or Ester-equivalents
 - Glycine Schiff-bases
 - β-Keto Esters or Malonates
 - Trichloromethylketones
 - N-acylpyrroles
 - N-Boc-anilides
 - Diazoacetates
- Conclusions

Trichloromethylketones

- -CCl₃ is a good leaving group
- Strong inductive effect of -CCl₃

Morimoto, H.; Wiedemann, S. H.; Yamaguchi, A.; Harada, S.; Chen, Z.; Matsunaga, S.; Shibasaki, M. *Angew. Chem.*, *Int. Ed.* **2006**, *45*, 3146

Substrate Scope

Morimoto, H.; Wiedemann, S. H.; Yamaguchi, A.; Harada, S.; Chen, Z.; Matsunaga, S.; Shibasaki, M. *Angew. Chem.*, *Int. Ed.* **2006**, *45*, 3146

Catalytic Cycle

Morimoto, H.; Wiedemann, S. H.; Yamaguchi, A.; Harada, S.; Chen, Z.; Matsunaga, S.; Shibasaki, M. *Angew. Chem.*, *Int. Ed.* **2006**, *45*, 3146

Asymmetric Variant

R	t (h)	yield (%)	dr (<i>syn/anti</i>)	ee (%)
Ph	9	96	21:1	96
4-Cl-C ₆ H ₄	20	97	20:1	96
4-MeO-C ₆ H ₄	21	96	22:1	95
2-furyl	4	98	8:1	96
2-thienyl	19	98	20:1	95 —
(<i>E</i>)-PhCH=CH	19	75	21:1	96
Су	22	85	>30:1	96
<i>i</i> Bu	25	72	30:1	98

N N La (OAr)₃ + LiOAr

Morimoto, H.; Lu, G.; Aoyama, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc., 2007, 129, 9588

Mechanism Study

- La-OAr moiety functions as a Brønsted base to form Laenolate
- Preliminary kinetic studies on the concentration of trichloromethyl ketone suggested that the enolate formation is the RDS in the absence of LiOAr.

Two possibilities for the role of LiOAr:

 (a) Complexation with La(OAr)₃/pybox to form more basic ate complex
 (b) LiOAr deprotonates trichloromethyl ketone to form Lienolate, followed by rapid transmetallation to generate

La-enolate.

Morimoto, H.; Lu, G.; Aoyama, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc., 2007, 129, 9588

Outline

- Background Information
- Esters or Ester-equivalents
 - Glycine Schiff-bases
 - β -Keto Esters or Malonates
 - Trichloromethylketones
 - N-acylpyrroles
 - N-Boc-anilides
 - Diazoacetates
- Conclusions

N-acylpyrroles

aromatic ketone

N-acylpyrrole

aromaticity of pyrrole same coordination mode as ketone activated carboxylic acid derivative

a: X= H: (*S*, *S*)-linked-binol b: X= TMS: (*S*, *S*)-6,6',6'',6'''-TMS-linked-binol

Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4365

		Substra	ate Sco	ре	
o-Ts N ∥	O N	In(O <i>i</i> Pr) ₃ (20 mol% Ligand a (10 mol%	%) o-Ts NH (-Ts NH O ↓ S↓
۳ F	₹ ОН (2 eq)	5 Å MS, THF, RT 89-111 h	R'S Č OH sy	vn	R'SY N OH anti
-	R	yield (%)	dr (<i>syn/anti)</i>	ee (%) (syn, a	anti)
-	(<i>E</i>)-PhCH=CH	94	91:9	96, 83	
	Ph	98	61:39	91, 81	
_	4-CI-C ₆ H ₄	97	59:41	96, 94	
o-Ts N R	+ OH N	In(O <i>i</i> Pr) ₃ (20 m Ligand a or b (10 5 Å MS, THF, R 65-99 h	ol%) o-Ts mol%) T		o-Ts NH O R S R OH
	(2 eq)		ć	anti	syn
-	R	yield (%) d	r (<i>anti</i> /syn)	ee (%) (<i>anti,</i> s	syn)
-	2-naphthyl	87	77:23	94, 89	
	$2-MeO-C_6H_4$	74	77:23	92, 86	
_	Cyclopropyl	86	75:25	98, 90	

Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4365

Transition-State Model

Harada, S.; Handa, S.; Matsunaga, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2005, 44, 4365

Outline

- Background Information
- Esters or Ester-equivalents
 - Glycine Schiff-bases
 - β -Keto Esters or Malonates
 - Trichloromethylketones
 - N-acylpyrroles
 - N-Boc-anilides
 - Diazoacetates
 - Conclusions

N-Boc-anilides

R	yield (%)
Ph	91
4-MeO-C ₆ H ₄	63
4-CI-C ₆ H ₄	81
1-naphthyl	95
2-furyl	78
2-thienyl	83
(<i>E</i>)-PhCH=CH	76

Saito, S.; Tsubogo, T.; Kobayashi, S. Chem. Commun. 2007, 1236.

N-Boc-anilides

R	yield (%)	syn/anti	_
	• • • •	•	-
Ph	86	14:86	
1-naphthyl	76	8:92	OH
2-furyl	81	9:91	
2-thienyl	81	15:85	

Saito, S.; Tsubogo, T.; Kobayashi, S. Chem. Commun. 2007, 1236.

Catalytic Cycle

Saito, S.; Tsubogo, T.; Kobayashi, S. Chem. Commun. 2007, 1236.

Outline

- Background Information
- Esters or Ester-equivalents
 - Glycine Schiff-bases
 - β -Keto Esters or Malonates
 - Trichloromethylketones
 - N-acylpyrroles
 - N-Boc-anilides
 - Diazoacetates

Conclusions

Tert-Butyl Diazoacetate

Ar	t (h)	yield (%)	ee (%)
Ph	24	80	95
$2-\text{Me-C}_6\text{H}_4$	72	53	90
4-Me-C ₆ H ₄	18	79	95
4-CI-C ₆ H ₄	26	89	96
4-MeO-C ₆ H ₄	20	72	95
2-naphthyl	17	77	94
2-furyl	5	84	85

Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc., 2007, 129, 10054

Outline

- Background Information
- Esters or Ester-equivalents
 - Glycine Schiff-bases
 - β -Keto Esters or Malonates
 - Trichloromethylketones
 - N-acylpyrroles
 - N-Boc-anilides
 - Diazoacetates
- Conclusions

Conclusions

- Future challenges
- 1) Expansion on esters or ester-equivalents
- 2) Development of catalytic versions of the racemic reactions
- 3) Improvement on the unsatisfactory reactions (new ligands, new metal sources, *etc.*)
- 4) One-pot cascades reactions

Acknowledgement

Dr. Wulff Dr. Walker, Dr. Staples

Li, Zhenjie, Aman, Munmun, Zhensheng, Anil, Nilanjana, Dima, Victor, Alex, Kostas

All those attended the seminar